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Abstract

A time series forecasting model based on a convolutional neural network, named “Solpred”,
was developed to process images of the sky from a ground based camera, forecasting solar
irradiance up to 15 minutes in the future. Accurate irradiance forecasts are a key factor
in being able to proactively manage changes in energy output from solar power sources
in an electricity grid, enabling a greater penetration of solar power. Solpred produced a
deterministic forecast with a skill of 23.4% using RMSE vs naive persistence at a 2-minute
forecast horizon of GHI, and a skill of 25.5% at a 15-minute forecast horizon of GHI. This
was compared against a re-implementation of the SUNSET model proposed by Sun, Sziics,
and Brandt [1], which achieved 21.6% at a 2-minute horizon and 22.1% at a 15-minute
horizon. The reasons for this difference in performance is investigated, with the absence
of batch normalisation layers being found to produce the largest increase in performance.

Various input and output configurations were applied to test the limits of the Solpred
architecture, with a key finding that sun-centred image cropping improved the skill of
the model from 16.4% to 23.4% at a 2-minute forecast horizon. This suggests an easy
improvement in performance for models, but also implies a limitation in how the architec-
ture extracts spatial features using convolutional layers. The convolutional layers struggle
to perform the spatial reasoning tasks required for solar forecasting, suggesting that they
could be augmented with more flexible modules such as transformer encoders or recurrent

modules when dealing with spatial reasoning tasks.
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